

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	1/5

EEE202-Electric Circuits II					
Course Code	Course Code Course Name Semester				ester
EEE202	Electri	ric Circuits II		Fall ⊠ Spring □ Summer □	
Hours		Credit	ECTS		
Theory	ory Practice Lab		4	_	
4	4 0 0		4	3	

Course Details		
Department	Electrical and Electronics Engineering	
Course Language	English	
Course Level	Undergraduate ⊠ Graduate □	
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □	
Course Type	Compulsory ⊠ Elective □	
Lecturer(s)	Prof. Dr. İsmail Avcıbaş	
Course Objectives	The basic objective of this course is to introduce students to the fundamental theory and mathematics for the analysis of Alternating Current (AC) electrical circuits, frequency response and transfer function of circuits.	
Course Content	Course content include sinusoids and phasors, sinusoidal steady-state analysis, AC power analysis, three-phase circuits, magnetically coupled circuits, the laplace transform and circuit analysis in the s-domain, frequency selective filters.	
Course Method/ Techniques	Lecture ⊠ Question & Answer ⊠ Presentation □ Discussion ⊠	
Prerequisites/ Corequisites	None	

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/5

Work Placement(s)	
-------------------	--

Textbook/References/Materials

- W. Nilsson, S. A. Riedel, Electric Circuits (10th ed.), Pearson. Charles K Alexander, Matthew Sadiku, Fundamentals of Electric Circuits (6th Ed.), McGraw Hill.

Course Category			
Mathematics and Basic Sciences		Education	
Engineering	\boxtimes	Science	
Engineering Design		Health	
Social Sciences		Profession	

Weekly Sci	Weekly Schedule		
No	Topics	Materials/Notes	
1	Sinusoids and Phasors	Nilsson 10th Ed. Chapter 9	
2	Sinusoids and Phasors	Nilsson 10th Ed. Chapter 9	
3	Sinusoidal Steady-State Analysis	Nilsson 10th Ed. Chapter 9	
4	Sinusoidal Steady-State Analysis	Nilsson 10th Ed. Chapter 9	
5	AC Power Analysis	Nilsson 10th Ed. Chapter 10	
6	AC Power Analysis	Nisson 10th Ed. Chapter 10	
7	Three-Phase Circuits	Nilsson 10th Ed. Chapter 11	
8	Midterm Exam		
9	Three-Phase Circuits	Nilsson 10th Ed. Chapter 11	
10	Magnetically Coupled Circuits	Nilsson 10th Ed. Appendix C	
11	The Laplace Transform and Circuit Analysis in the s-Domain	Nilsson 10th Ed. Chapter 12	
12	The Laplace Transform and Circuit Analysis in the s-Domain	Nilsson 10th Ed. Chapter 13	
13	Frequency Selective Filters	Nilsson 10th Ed. Chapter 14	
14	Frequency Selective Filters	Nilsson 10th Ed. Chapter 14	
15	3-port Networks	Nilsson 10th Ed. Chapter 18	
16	Final Exam		

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	3/5

Assessment Methods and Criteria		
In-term studies	Quantity	Percentage
Attendance	14	5
Lab		
Practice		
Fieldwork		
Course-specific internship		
Quiz/Studio/Criticize		
Homework	3	15
Presentation / Seminar		
Project	1	10
Report		
Seminar		
Midterm Exam	1	30
Final Exam	1	40
	Total	100%
Contribution of Midterm Studies to Success Grade		60%
Contribution of End of Semester Studies to Success Grade		40%
	Total	100%

ECTS Allocated Based on Student Workload	d		
Activities	Quantity	Duration (Hrs)	Total Workload
Course Hours	16	4	64
Lab			
Practice			
Fieldwork			
Course-specific Work Placement			
Out-of-class study time			
Quiz/Studio/Criticize			
Homework	3	5	15
Presentation / Seminar			
Project	1	10	10
Report			
Midterm Exam and Preparation for Midterm	1	15	15
Final Exam and Preparation for Final Exam	1	15	15
Total Workload			119
Total Workload / 25			4.76
ECTS Credit			5

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Course L	Course Learning Outcomes		
No	Outcome		
L1	To understand the fundamental principles in electric circuit theory and be able to extend these principles into a way of thinking for problem solving in mathematics, science and engineering		
L2	To analyze analog circuits that includes energy storage elements in the time and frequency domains		
L3	To apply solving methods and theorems for ac circuits		
L4	To solve three phase circuits		
L5	To solve circuits in s-domain		

Contribution of Course Learning Outcomes to Program Competencies/Outcomes														
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant														
	P1	P2	Р3	P4	P5	Р6	P7	P8	P9	P10	P11			Total
L1	5	5	4	4	4						3			
L2	5	5	4	4	3						3			
L3	5	5	4	4	3						3			
L4	5	5	4	4	3						3			
L5	5	5	4	4	5						3			
Total														

- i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.
- ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.
- iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.
- iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.
- v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.

Doküman No	MF.FR.003					
Revizyon Tarihi	13.11.2024					
Revizyon No	01					
Sayfa No	5/5					

- vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.
- vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.
- viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.
- ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.
- x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
- xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.