

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	1/5

EEE 471 Radar Theory				
Course Code	Course Code Course Name Semester			
EEE 471	Radar Theory		Fall 🗵 Spring	☐ Summer ☐
Hours Credit EC			ECTS	
Theory	Practice	Lab	2	Г
3			3	5

Course Details		
Department	Electrical and Electronics Engineering	
Course Language	English	
Course Level	Undergraduate ⊠ Graduate □	
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □	
Course Type	Compulsory □ Elective ⊠	
Lecturer(s)	Prof. Dr. İsmail Hakkı ALTAŞ	
Course Objectives	At the end of the course, students: - Will learn the basics of radar principles. - Will be able to establish and solve radar and jamming equations. - Will understand the basic radar types and radar signal processing techniques. - Will be able to select radar type according to the operational requirements. - Will be able to explain different radar concepts, such as pulse compression, clutter, and detection.	
Course Content	 Introduction to Radar Systems (Definitions and Nomenclature) A General Survey on Radar Theory Pulsed Radars (The Radar Range Equation, Low/High PRF Radar Equation Surveillance Radar Equation, Jamming Equation, Bistatic Radar Equation) Radar Losses and Noise Figure Continuous Wave (CW) Radars Radar Signals and Signal Processing Linear Systems and Complex Signal Representation Discrete Time Systems and Signals The Matched Filter Radar Rx Pulse Compression Radar Clutter 	
Course Method/ Techniques	Lecture ⊠ Question & Answer ⊠ Presentation ⊠ Discussion ⊠	
Prerequisites/ Corequisites		

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/5

Work Placement(s)	
Textbook/References/Materials	

- Bassem R. Mahafza, Radar Systems Analysis and Design Using MATLAB, Third Edition, deciBel Research Inc. Huntsville, Alabama, USA, 2013.
- Merrill I. Skolnik, Introduction to Radar Systems, Second Edition, McGraw-Hill International Edition, 1981.

Course Category			
Mathematics and Basic Sciences		Education	
Engineering	\boxtimes	Science	
Engineering Design	\boxtimes	Health	
Social Sciences		Profession	

Weekly Sc	Weekly Schedule		
No	Topics	Materials/Notes	
1	Introduction to Radar Systems		
2	Pulsed Radar Equations		
3	Radar Equation with Jamming		
4	Radar Equation with Jamming		
5	Radar Losses		
6	Noise Factor		
7	Continuous Wave Radars		
8	Midterm Exam		
9	Spectral Display of Radar Signals		
10	Discrete-Time Systems and Signals		
11	Matched Filter Radar Receiver		
12	Matched Filter Radar Receiver		
13	Pulse Compression		
14	Pulse Compression		
15	Radar Clutter		
16	Final Exam		

1	
Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
-	
Revizyon No	01
Sayfa No	3 / 5

Assessment Methods and Criteria		
In-term studies	Quantity	Percentage
Attendance		
Lab		
Practice		
Fieldwork		
Course-specific internship		
Quiz/Studio/Criticize	2	15%
Homework	1	15%
Presentation / Seminar		
Project		
Report		
Seminar		
Midterm Exam	1	20%
Final Exam	1	50%
	Total	100%
Contribution of Midterm Studies to Success Grade		50%
Contribution of End of Semester Studies to Success Grade		50%
	Total	100%

ECTS Allocated Based on Student Workload			
Activities	Quantity	Duration (Hrs)	Total Workload
Course Hours	14	3	42
Lab	0	0	0
Practice	0	0	0
Fieldwork	0	0	0
Course-specific Work Placement	0	0	0
Out-of-class study time	14	2	28
Quiz/Studio/Criticize	2	5	10
Homework	1	10	10
Presentation / Seminar	0	0	0
Project	0	0	0
Report	0	0	0
Midterm Exam and Preparation for Midterm	1	15	15
Final Exam and Preparation for Final Exam	1	20	20
Total Workload			125
Total Workload / 25			125/5
ECTS Credit			5

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Course Learning Outcomes		
No	No Outcome	
L1	Will learn the basics of Radar principles.	
L2	Will be able to establish and solve radar and jamming equations.	
L3	Will learn the basic structures of the radar components, and radar losses.	
L4	Will be able to select radar type according to the operational requirements.	
L5	Will be able to explain radar signal processing techniques.	

Contribut	Contribution of Course Learning Outcomes to Program Competencies/Outcomes														
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant															
	P1	P2	Р3	P4	P5	Р6	P7	P8	P9	P10	P11				Total
L1	4	4		4	4										-
L2	4	4		4	4										-
L3	3	3	3	3											-
L4		3	3	3											-
L5	3	3	3												-
Total								ı	-						

- i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.
- ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.
- iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.
- iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.
- v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.
- vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.

Doküman No	MF.FR.003						
Revizyon Tarihi	13.11.2024						
Revizyon No	01						
Sayfa No	5/5						

vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.

- viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.
- ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.
- x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
- xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.