| Doküman No | MF.FR.003 | |-----------------|------------| | Revizyon Tarihi | 13.11.2024 | | Revizyon No | 01 | | Sayfa No | 1/5 | | EEE 471 Radar Theory | | | | | |----------------------|----------------------------------|-----|---------------|------------| | Course Code | Course Code Course Name Semester | | | | | EEE 471 | Radar Theory | | Fall 🗵 Spring | ☐ Summer ☐ | | Hours Credit EC | | | ECTS | | | Theory | Practice | Lab | 2 | Г | | 3 | | | 3 | 5 | | Course Details | | | |--------------------------------|--|--| | Department | Electrical and Electronics Engineering | | | Course Language | English | | | Course Level | Undergraduate ⊠ Graduate □ | | | Mode of Delivery | Face to Face ⊠ Online □ Hybrid □ | | | Course Type | Compulsory □ Elective ⊠ | | | Lecturer(s) | Prof. Dr. İsmail Hakkı ALTAŞ | | | Course Objectives | At the end of the course, students: - Will learn the basics of radar principles. - Will be able to establish and solve radar and jamming equations. - Will understand the basic radar types and radar signal processing techniques. - Will be able to select radar type according to the operational requirements. - Will be able to explain different radar concepts, such as pulse compression, clutter, and detection. | | | Course Content | Introduction to Radar Systems (Definitions and Nomenclature) A General Survey on Radar Theory Pulsed Radars (The Radar Range Equation, Low/High PRF Radar Equation Surveillance Radar Equation, Jamming Equation, Bistatic Radar Equation) Radar Losses and Noise Figure Continuous Wave (CW) Radars Radar Signals and Signal Processing Linear Systems and Complex Signal Representation Discrete Time Systems and Signals The Matched Filter Radar Rx Pulse Compression Radar Clutter | | | Course Method/
Techniques | Lecture ⊠ Question & Answer ⊠ Presentation ⊠ Discussion ⊠ | | | Prerequisites/
Corequisites | | | | Doküman No | MF.FR.003 | |-----------------|------------| | Revizyon Tarihi | 13.11.2024 | | Revizyon No | 01 | | Sayfa No | 2/5 | | Work Placement(s) | | |-------------------------------|--| | Textbook/References/Materials | | | | | - Bassem R. Mahafza, Radar Systems Analysis and Design Using MATLAB, Third Edition, deciBel Research Inc. Huntsville, Alabama, USA, 2013. - Merrill I. Skolnik, Introduction to Radar Systems, Second Edition, McGraw-Hill International Edition, 1981. | Course Category | | | | |--------------------------------|-------------|------------|--| | Mathematics and Basic Sciences | | Education | | | Engineering | \boxtimes | Science | | | Engineering Design | \boxtimes | Health | | | Social Sciences | | Profession | | | Weekly Sc | Weekly Schedule | | | |-----------|-----------------------------------|-----------------|--| | No | Topics | Materials/Notes | | | 1 | Introduction to Radar Systems | | | | 2 | Pulsed Radar Equations | | | | 3 | Radar Equation with Jamming | | | | 4 | Radar Equation with Jamming | | | | 5 | Radar Losses | | | | 6 | Noise Factor | | | | 7 | Continuous Wave Radars | | | | 8 | Midterm Exam | | | | 9 | Spectral Display of Radar Signals | | | | 10 | Discrete-Time Systems and Signals | | | | 11 | Matched Filter Radar Receiver | | | | 12 | Matched Filter Radar Receiver | | | | 13 | Pulse Compression | | | | 14 | Pulse Compression | | | | 15 | Radar Clutter | | | | 16 | Final Exam | | | | 1 | | |-----------------|------------| | Doküman No | MF.FR.003 | | | | | Revizyon Tarihi | 13.11.2024 | | - | | | Revizyon No | 01 | | | | | Sayfa No | 3 / 5 | | Assessment Methods and Criteria | | | |--|----------|------------| | In-term studies | Quantity | Percentage | | Attendance | | | | Lab | | | | Practice | | | | Fieldwork | | | | Course-specific internship | | | | Quiz/Studio/Criticize | 2 | 15% | | Homework | 1 | 15% | | Presentation / Seminar | | | | Project | | | | Report | | | | Seminar | | | | Midterm Exam | 1 | 20% | | Final Exam | 1 | 50% | | | Total | 100% | | Contribution of Midterm Studies to Success Grade | | 50% | | Contribution of End of Semester Studies to Success Grade | | 50% | | | Total | 100% | | ECTS Allocated Based on Student Workload | | | | |---|----------|----------------|----------------| | Activities | Quantity | Duration (Hrs) | Total Workload | | Course Hours | 14 | 3 | 42 | | Lab | 0 | 0 | 0 | | Practice | 0 | 0 | 0 | | Fieldwork | 0 | 0 | 0 | | Course-specific Work Placement | 0 | 0 | 0 | | Out-of-class study time | 14 | 2 | 28 | | Quiz/Studio/Criticize | 2 | 5 | 10 | | Homework | 1 | 10 | 10 | | Presentation / Seminar | 0 | 0 | 0 | | Project | 0 | 0 | 0 | | Report | 0 | 0 | 0 | | Midterm Exam and Preparation for Midterm | 1 | 15 | 15 | | Final Exam and Preparation for Final Exam | 1 | 20 | 20 | | Total Workload | | | 125 | | Total Workload / 25 | | | 125/5 | | ECTS Credit | | | 5 | | Doküman No | MF.FR.003 | |-----------------|------------| | Revizyon Tarihi | 13.11.2024 | | Revizyon No | 01 | | Sayfa No | 4 / 5 | | Course Learning Outcomes | | | |--------------------------|--|--| | No | No Outcome | | | L1 | Will learn the basics of Radar principles. | | | L2 | Will be able to establish and solve radar and jamming equations. | | | L3 | Will learn the basic structures of the radar components, and radar losses. | | | L4 | Will be able to select radar type according to the operational requirements. | | | L5 | Will be able to explain radar signal processing techniques. | | | Contribut | Contribution of Course Learning Outcomes to Program Competencies/Outcomes | | | | | | | | | | | | | | | |---|---|----|----|----|----|----|----|----|-----------|-----|-----|--|--|--|-------| | Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant | | | | | | | | | | | | | | | | | | P1 | P2 | Р3 | P4 | P5 | Р6 | P7 | P8 | P9 | P10 | P11 | | | | Total | | L1 | 4 | 4 | | 4 | 4 | | | | | | | | | | - | | L2 | 4 | 4 | | 4 | 4 | | | | | | | | | | - | | L3 | 3 | 3 | 3 | 3 | | | | | | | | | | | - | | L4 | | 3 | 3 | 3 | | | | | | | | | | | - | | L5 | 3 | 3 | 3 | | | | | | | | | | | | - | | Total | | | | | | | | ı | - | | | | | | | - i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems. - ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose. - iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose. - iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies. - v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics. - vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently. | Doküman No | MF.FR.003 | | | | | | | |-----------------|------------|--|--|--|--|--|--| | Revizyon Tarihi | 13.11.2024 | | | | | | | | Revizyon No | 01 | | | | | | | | Sayfa No | 5/5 | | | | | | | vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions. - viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself. - ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications. - x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development. - xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.