

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	1/5

EEE 417 Communications Systems II				
Course Code Course Name Semester				
EEE 417	Communications	Communications Systems II		\square Summer \square
Hours		Credit	ECTS	
Theory	Practice	Lab	2	Г
3			3	5

Course Details		
Department	Electrical and Electronics Engineering	
Course Language	English	
Course Level	Undergraduate ⊠ Graduate □	
Mode of Delivery	Face to Face ⊠ Online □ Hybrid □	
Course Type	Compulsory □ Elective ⊠	
Lecturer(s)	Prof. Dr. İsmail Hakkı ALTAŞ	
	- Students learn the types of modulation used in digital communication systems and basic expressions related to communication.	
Course Objectives	- Students learn the concepts of block diagrams, analog and digital communication comparisons, bit, bps, baud, baud rate, BER, channel, noise, passive filters, and active filters.	
	- Students learn unipolar, polar, and Bipolar line coding.	
	- Students learn ASK, FSK, PSK, discrete, periodic, non-periodic, and energy concepts. They will also understand the concepts of power, random, deterministic, translation, scaling, and inversion.	
Course Content	- Sampling Theorem, Ideal sampling, Pulse amplitude modulation (PAM), PAM demodulation methods, Bandpass sampling theorem - Pulse time modulation, analysis of PPM and PDM signals, PPM and PDM demodulation - Multiplexing (TDM, FDM), bandwidth requirements of TDM and FDM	
Course Method/ Techniques	Lecture ⊠ Question & Answer ⊠ Presentation ⊠ Discussion ⊠	
Prerequisites/ Corequisites	EEE 314	

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	2/5

Work Placement(s)	
Textbook/References/Ma	terials
	ems, S. Haykin, M. Moher, 5th Edition, 2010. ns, J.G. Proakis, D. G. Manolakis, 4th Edition, 2007.

Course Category				
Mathematics and Basic Sciences		E	Education	
Engineering	\boxtimes	S	Science	
Engineering Design	\boxtimes	Н	Health	
Social Sciences		Р	Profession	

Weekly Sc	Weekly Schedule		
No	Topics	Materials/Notes	
1	Sampling Theorem, Ideal sampling, Pulse amplitude modulation (PAM), Sampling examples in practice		
2	PAM demodulation methods, Bandpass sampling theorem		
3	Pulse time modulation, analysis of PPM and PDM signals, PPM and PDM demodulation		
4	Demodulation of baseband signal in practice, Bandwidth requirements		
5	Multiplexing (TDM, FDM), bandwidth requirements of TDM and FDM		
6	Quantized systems and quantization noise, modulation, and demodulation of PCM		
7	Systems that use PCM in practice		
8	Midterm Exam		
9	Baseband data transmission, Intersymbol interference (ISI), Nyquist criterion		
10	Matched filter		
11	Associated receiver, Probability of error		
12	Digital modulation techniques (B-ASK, B-FSK, B-PSK)		
13	Digital modulation techniques (B-ASK, B-FSK, B-PSK)		
14	Digital modulation techniques (M-ASK, M-FSK, M-PSK, M-QAM)		
15	Digital modulation techniques (M-ASK, M-FSK, M-PSK, M-QAM)		
16	Final Exam		

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	3 / 5

Assessment Methods and Criteria		
In-term studies	Quantity	Percentage
Attendance		
Lab		
Practice		
Fieldwork		
Course-specific internship		
Quiz/Studio/Criticize	2	15%
Homework	2	15%
Presentation / Seminar		
Project		
Report		
Seminar		
Midterm Exam	1	20%
Final Exam	1	50%
	Total	100%
Contribution of Midterm Studies to Success Grade		50%
Contribution of End of Semester Studies to Success Grade		50%
	Total	100%

ECTS Allocated Based on Student Workloa	d		
Activities	Quantity	Duration (Hrs)	Total Workload
Course Hours	14	3	42
Lab	0	0	0
Practice	0	0	0
Fieldwork	0	0	0
Course-specific Work Placement	0	0	0
Out-of-class study time	14	2	28
Quiz/Studio/Criticize	2	4	8
Homework	2	5	10
Presentation / Seminar	0	0	0
Project	0	0	0
Report	0	0	0
Midterm Exam and Preparation for Midterm	1	15	15
Final Exam and Preparation for Final Exam	1	20	22
Total Workload			125
Total Workload / 25			125/25
ECTS Credit			5

Doküman No	MF.FR.003
Revizyon Tarihi	13.11.2024
Revizyon No	01
Sayfa No	4 / 5

Course Learning Outcomes		
No	Outcome	
L1	Students will learn basic digital communication knowledge.	
L2	Students will be provided with system analysis skills.	
L3	Students will be equipped with analytical thinking skills.	
L4	Students will understand modulation and demodulation techniques used in digital communication systems.	
L5	Students will be informed about the practical applications of digital communication systems.	

Contribution of Course Learning Outcomes to Program Competencies/Outcomes														
Contribution Level: 1: Very Slight, 2: Slight, 3: Moderate, 4: Significant, 5: Very Significant														
	P1	P2	Р3	P4	P5	Р6	P7	P8	P9	P10	P11			Total
L1		4	4											-
L2	4	4	4											-
L3			4	4										-
L4		4	4	4										-
L5			4	3	3									-
Total								-						

- i. Sufficient knowledge in the fields of mathematics, natural sciences, and related engineering disciplines; the ability to apply theoretical and practical knowledge in solving complex engineering problems.
- ii. The ability to identify, formulate, and solve complex engineering problems; the ability to select and apply appropriate analysis and modeling methods for this purpose.
- iii. The ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; the ability to apply modern design methods for this purpose.
- iv. The ability to select and use modern techniques and tools required for the analysis and solution of complex problems encountered in engineering applications; the ability to effectively use information technologies.
- v. The ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for the investigation of complex engineering problems or discipline-specific research topics.

Doküman No	MF.FR.003					
Revizyon Tarihi	13.11.2024					
Revizyon No	01					
Sayfa No	5/5					

- vi. The ability to work effectively in intra-disciplinary and multidisciplinary teams; the ability to work independently.
- vii. The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and understandable instructions.
- viii. Awareness of the necessity of lifelong learning; the ability to access information, track developments in science and technology, and continuously renew oneself.
- ix. Acting in accordance with ethical principles, knowledge of professional and ethical responsibilities, and the standards used in engineering applications.
- x. Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
- xi. Knowledge of the impact of engineering practices on health, environment, and safety at global and societal levels, and awareness of contemporary engineering issues; awareness of the legal consequences of engineering solutions.